
Gradient critical phenomena in the Ising quantum chain

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2007 J. Phys. A: Math. Theor. 40 1467

(http://iopscience.iop.org/1751-8121/40/7/004)

Download details:

IP Address: 171.66.16.147

The article was downloaded on 03/06/2010 at 06:32

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/1751-8121/40/7
http://iopscience.iop.org/1751-8121
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


IOP PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND THEORETICAL

J. Phys. A: Math. Theor. 40 (2007) 1467–1479 doi:10.1088/1751-8113/40/7/004

Gradient critical phenomena in the Ising quantum
chain

T Platini, D Karevski and L Turban

Laboratoire de Physique des Matériaux, UMR CNRS 7556, Université Henri Poincaré, Nancy 1,
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Abstract
We consider the behaviour of a critical system in the presence of a gradient
perturbation of the couplings. In the direction of the gradient an interface
region separates the ordered phase from the disordered one. We develop a
scaling theory for the density profiles induced by the gradient perturbation
which involves a characteristic length given by the width of the interface
region. The scaling predictions are tested in the framework of the mean-field
Ginzburg–Landau theory. Then we consider the Ising quantum chain in a
linearly varying transverse field which corresponds to the extreme anisotropic
limit of a classical two-dimensional Ising model. The quantum Hamiltonian
can be diagonalized exactly in the scaling limit where the eigenvalue problem
is the same as for the quantum harmonic oscillator. The energy density, the
magnetization profile and the two-point correlation function are studied either
analytically or by exact numerical calculations. Their scaling behaviour is in
agreement with the predictions of the scaling theory.

PACS numbers: 68.35.Rh, 05.50.+q, 75.10.Pq

1. Introduction

Inhomogeneities may have a strong influence on the properties of a system in the vicinity
of a second-order phase transition. Actually this influence will depend on the relevance
of the perturbation introduced by the inhomogeneity (see [1] for a review). A relevant
inhomogeneity may change the universality class of the system or even suppress the critical
point as, for instance, in a finite-size system [2]. The critical behaviour may be altered by the
presence of quenched disorder [3] or aperiodic modulation of the couplings [4, 5]. It will be
modified locally (i.e., within a correlation length) at a flat free surface, at a corner [6–12] or
at the tip of a parabolic-shape system [1, 13]. Line defects may have also some influence on
the local critical behaviour [1, 14–16]. One may mention the case of films where the presence
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of boundaries, by breaking translation invariance, leads to the formation of specific profiles
[17–24].

Other types of inhomogeneities are linked to the application of external fields like
magnetic, gravitational or thermal fields. These fields influence the behaviour of physical
quantities like the magnetization, the particle or the energy density in the vicinity of the
homogeneous system critical point. One should first mention an early work on the xy-quantum
chain in a linearly varying z-field [25] for which exact results were obtained in different scaling
limits. Phase coexistence induced by antiparallel magnetic fields at the surfaces of a film was
studied in [26–30]. The effect of gravity was considered in [28–30] where it was found that
it restores two-phase coexistence up to the bulk critical point, above the wetting temperature.
The effect of a temperature gradient on an interface at equilibrium was considered in [31] for
a symmetric binary system below its critical point. Phase separation induced by temperature
gradients was studied in [32–34]. The effect of temperature gradients on interfacial premelting
was considered in [35].

The influence of inhomogeneities on the critical behaviour was also considered in a
series of works on gradient percolation [36–40] where the perturbation was introduced as a
tool allowing for high-precision estimates of the percolation threshold and the percolation
exponents.

In this work we begin with a presentation of the scaling theory for the density profiles
in the presence of gradient field inhomogeneities. Specifically, we consider a system with a
deviation from the critical coupling which varies linearly in one space direction. The coupling
is at its critical value in the middle of the system where an interface region separates the ordered
phase on the left from the disordered phase on the right. We test the validity of the scaling
arguments, first at the mean-field level, within Ginzburg–Landau theory. Then we present a
study of the Ising quantum chain in a linearly varying transverse field, hl = 1 + gl, which
corresponds to the extreme anisotropic limit of the two-dimensional classical Ising model
with a linear variation of the couplings. We work in the scaling limit where the size L of the
system goes to infinity while the gradient g goes to zero with the product gL held fixed. The
excitation spectrum of the inhomogeneous Ising quantum chain is obtained exactly in terms of
the solution of an harmonic oscillator eigenvalue problem. The knowledge of the eigenvectors
allows us to obtain the energy density profile, the magnetization profile and the behaviour of
the spin–spin correlation function. Their scaling forms are in complete agreement with the
results of the scaling theory.

The paper is organized as follows: in section 2 we present a scaling analysis for the density
profiles which is confirmed in section 3 in the framework of a mean-field approximation.
Section 4 deals with the study of the Ising quantum in a linearly varying transverse field.
First, the form of the quantum Hamiltonian is deduced from the classical Ising problem. Then
the Hamiltonian is diagonalized exactly in the scaling limit. In the following subsections,
analytical and numerical results for the energy density, the magnetization profile and the
correlation function are confronted to the results of the scaling theory. We summarize our
results in the last section.

2. Scaling arguments

Let us consider a critical system perturbed by a constant gradient g along the z-direction, such
that the deviation from the critical coupling is given by

K(z) − Kc = −�(z) = −gz, g > 0. (2.1)
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Thus around the origin there is an interface between the ordered phase on the left-hand side
where � < 0 and the disordered phase on the right side where � > 0. Let � denote the width
of this interface. If the system is infinite � is expected to depend on g only and to diverge
when g vanishes.

Under a change of the length scale by a factor b, the thermal perturbation �(z) with
scaling dimension yt = 1/ν, where ν is the correlation length exponent, transforms as

g′z′ = b1/νgz = g′ z
b
, (2.2)

so that

g′ = b1+1/νg. (2.3)

The interface width transforms as

�′ = �(g′) = �

b
= �(b1+1/νg), (2.4)

with b = g−ν/(1+ν), one finally obtains

� ∝ g−ν/(1+ν), (2.5)

for the typical length introduced by the thermal gradient g.
The same result can be obtained self-consistently [36] by noting that with the width � is

associated a typical deviation from the critical coupling �(�) = g� from which a characteristic
length [�(�)]−ν can be constructed. Since the only length in the problem is the interface width,
�, it satisfies

� ∝ (g�)−ν . (2.6)

Solving for �, one immediately recovers (2.5).
Let us now study the influence of the thermal gradient on the scaling behaviour of the

density ϕ with scaling dimension xϕ . This density can be the magnetization density m or the
singular part of the energy density e. In the perturbed critical system it is a function ϕ(z, �)

or, alternatively, according to (2.5), a function ϕ(z, g) transforming as

ϕ′ = ϕ(z′, g′) = bxϕ ϕ(z, g) (2.7)

under a change of scale, so that

ϕ(z, g) = b−xϕ ϕ
( z

b
, b1+1/νg

)
. (2.8)

With b = g−ν/(1+ν) ∝ � one obtains the scaling form

ϕ(z, g) = gνxϕ/(1+ν)�[gν/(1+ν)z]. (2.9)

One may note that, according to (2.5), the prefactor in (2.9) exhibits the finite-size behaviour
ϕ ∝ �−xϕ expected for a critical system with a transverse size �.

For a magnetic system the magnetization density, m(z, g), with scaling dimension
xm = β/ν, is non-vanishing in the ordered region z < 0, and one expects the same local
critical behaviour as for the homogeneous system at the same value of the coupling, i.e.,

m(z, g) ∝ |�(z)|β ∝ |gz|νxm , z < 0. (2.10)

for not too large values of |�(z)|. Here and in the following, we suppose that m(z, g) � 0.
Comparing (2.10) to (2.9) with ϕ = m, one obtains the form of the scaling function in this
region:

�m(u) ∼ |u|νxm , u < 0. (2.11)
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Just at the interface one expects �m(0) = const �= 0, so that the local magnetization is
non-vanishing and behaves as the prefactor in (2.9), displaying the finite-size behaviour
m(0, g) ∝ �−xm . Since m(z, g) > m(0, g) when z < 0, the scaling behaviour given in
equations (2.10) and (2.11) is valid only when |gz|νxm > �−xm . Using (2.5), this translates
into z < −�.

On the right-hand side of the interface, in the weak-coupling region, the magnetization
density is expected to display the same exponential decay as the two-point correlation function
�(z) = 〈m(0)m(z)〉. For a homogeneous system in its disordered phase, with a constant
deviation � from the critical coupling, one has

�(z) ∼ exp

(
−const

z

ξ

)
∼ exp

(
−const

z

�−ν

)
, z � ξ, (2.12)

where ξ is the correlation length. Assuming the same behaviour for the inhomogeneous
system, with the correlation length taking a value governed by the local deviation from the
critical point, ξ ∝ [�(z)]−ν , one obtains [13]

m(z, g) ∼ exp(−const gνz1+ν). (2.13)

Equations (2.9) and (2.13) give the form of the scaling function for the order parameter when
z � 0:

m(z, g) = gνxm/(1+ν)�m[gν/(1+ν)z], �m(u) ∼ exp(−const u1+ν). (2.14)

The same type of arguments leads to the scaling behaviour of the singular part of the
energy density:

e(z, g) = gνxe/(1+ν)�e[gν/(1+ν)z], �e(u) ∼ exp(−const |u|1+ν), (2.15)

for both sides of the interface. Here xe = d − 1/ν is the scaling dimension of the energy
density.

The two-point correlation function, with scaling dimension 2xm, can also be written under
the scaling form

�(z, g) = g2νxm/(1+ν)��[gν/(1+ν)z], (2.16)

with the exponential decay, ��(u) ∼ exp(−const u1+ν), for the connected part, �c(z, g) =
�(z, g) − 〈m(0)〉〈m(z)〉.

3. Mean-field theory

In order to check our scaling assumptions, let us now study the gradient perturbation problem
in mean-field theory. With a scalar order parameter m and up–down symmetry, the Ginzburg–
Landau free energy functional of the critical system perturbed by the gradient term reads

G[m] = G[0] +
∫

V

[
C

2
(∇m)2 +

�(z)

2
m2 +

B

4
m4 − Hm

]
dV, (3.1)

where B and C are positive constants. The first term is the energy contribution coming from
inhomogeneities. The quadratic term is the thermal gradient perturbation with, as before,
�(z) = gz and g > 0. The quartic term ensures the stability of the system in the ordered
region for z < 0. The last term gives the interaction with the external field H.

In the mean-field approximation the equilibrium value of the order parameter minimizes
G[m]. Thus the variation of the free energy, δG, vanishes to first order in δm. This leads to
the Ginzburg–Landau equation

−C
d2m

dz2
+ gzm(z) + Bm3(z) = 0, (3.2)
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where it was assumed that H = 0 and that translation invariance is broken only in the
z-direction.

Introducing the dimensionless variable, ζ = z/�, the Ginzburg–Landau equation can be
rewritten as

− C

�2

d2m

dζ 2
+ g�ζm(ζ ) + Bm3(ζ ) = 0. (3.3)

The coefficients of d2m/dζ 2 and m(ζ) have to scale in the same way. Thus C/�2 ∝ g� and
the interface width has the following scaling behaviour:

� �
(

C

g

)1/3

∝ g−ν/(1+ν), (3.4)

since ν = 1/2 in mean-field theory.
In the ordered region, for z 	 −� or ζ 	 −1 in (3.3), one can neglect the second

derivative which is much smaller than the next term in the Ginzburg–Landau equation (3.2)
so that we obtain

m(z, g) �
(−gz

B

)1/2

, (3.5)

which confirms the scaling prediction (2.10) since here β = νxm = 1/2.
The order parameter is very small for z � 0, and the cubic term in (3.2) can be neglected.

With the change of variable u = z(g/C)1/3 one obtains the Airy equation

d2m

du2
− um(u) = 0. (3.6)

The order parameter is then given by m(z, g) ∝ Ai(u) with the leading asymptotic behaviour

m(z, g) ∼ exp(−const u3/2) ∼ exp(−const g1/2z3/2), (3.7)

when z � 0 in agreement with equation (2.14) with ν = 1/2.

4. Ising quantum chain in a linearly varying transverse field

4.1. Quantum Hamiltonian

Let us consider the two-dimensional classical nearest-neighbour Ising model on a square
lattice with vertical couplings K1(l) varying in the horizontal direction (−L/2 < l < L/2)

and constant horizontal couplings K2. The partition function can be written as

Z ∝ Tr T M, (4.1)

where M is the number of horizontal rows and T is the row-to-row transfer matrix given by
[41, 42]

T = exp

[∑
l

K∗
1 (l)σ z

l

]
exp

[∑
l

K2σ
x
l σ x

l+1

]
. (4.2)

σx,z are Pauli spin operators, K∗
1 (l) = −1/2 ln tanh[K1(l)] is the dual of the vertical coupling

and it is assumed to vary as

K∗
1 (l) = K∗

1 (1 + gl), g � 0. (4.3)

In the extreme anisotropic limit [43–45] K1 → ∞ (so that K∗
1 → 0) and K2 → 0 while

keeping the ratio h = K∗
1 /K2 constant, the transfer matrix T can be rewritten as

T = 1 − 2K2H. (4.4)
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H is the Hamiltonian of the Ising quantum chain in a transverse field [46] and takes the
following form:

H = −1

2

L/2−1∑
l=−L/2

σx
l σ x

l+1 − 1

2

L/2∑
l=−L/2

hlσ
z
l , hl = h(1 + gl), (4.5)

where g = θ/L with θ � 0.
In the homogeneous case, g = 0, the system is self-dual and critical at h = 1 in the

thermodynamic limit L → ∞. For h < 1, the system is ordered with 〈σx〉 �= 0 whereas
〈σx〉 = 0, when h > 1.

The perturbed system is assumed to be critical when θ = 0 so that h = 1 in (4.5) and
hl = 1 + θl/L = 1 + gl. In order to keep hl � 0, one has to take θ � 2. The transverse field
is smaller (greater) than its critical value on the left-hand side (right) of the origin. Thus, in
the thermodynamic limit, the quantum chain is ordered for l < 0, and the value of the order
parameter decreases to zero when l → +∞.

4.2. Diagonalization

After a Jordan–Wigner transformation [47], the Hamiltonian (4.5) becomes a quadratic form
in fermion creation and annihilation operators which is diagonalized through a canonical
transformation [46, 48] leading to

H =
L∑

q=0

εq

(
η†

qηq − 1

2

)
. (4.6)

η
†
q (ηq) are diagonal fermion creation (annihilation) operators and εq are the energies of the

fermionic excitations. They satisfy the following set of equations:

Aψq = εqφq, A†φq = εqψq, (4.7)

where

A =




−h−L/2 0 0 0 0
1 −h−L/2+1 0 0 0

. . .
. . .

0 0 1 −hL/2−1 0
0 0 0 1 −hL/2


 (4.8)

and A† is the transposed matrix. According to (4.7), the normalized eigenvectors, φq and ψq ,
are solutions of the following eigenvalue equations:

AA†φq = ε2
qφq, A†Aψq = ε2

qψq. (4.9)

In the bulk of the system these eigenvalue equations can be written as

hl−1φq(l − 1) +
[
ε2
q − 1 − h2

l

]
φq(l) + hlφq(l + 1) = 0,

hlψq(l − 1) +
[
ε2
q − 1 − h2

l

]
ψq(l) + hl+1ψq(l + 1) = 0.

(4.10)

Introducing the scaling variable u = g1/2l, the difference equations in (4.10) can be
expanded in the scaling limit where L → ∞ and g → 0 in such a way that the product,
gL = θ , is held fixed. Up to terms of the first order in g the expansions lead to the following
harmonic oscillator eigenvalue equations:

d2φ

du2
+

[(
ε

g1/2

)2

− 1 − u2

]
φ(u) = 0,

d2ψ

du2
+

[(
ε

g1/2

)2

+ 1 − u2

]
ψ(u) = 0.

(4.11)



Gradient critical phenomena in the Ising quantum chain 1473

With the boundary conditions φ(±∞) = ψ(±∞) = 0, one obtains

ψn(u) = Cn e−u2/2Hn(u), φn+1(u) = ψn(u), εn =
√

2ng, n = 0, 1, 2, . . . , (4.12)

where Hn(u) is the Hermite polynomial of order n and Cn = (g/π)1/4(2nn!)−1/2 is a
normalization factor.

One may note that in the bulk, according to (4.8), the operators A and A† satisfy the
commutation relation

[A, A†] = gC, Cl,m = δl−1,m + δl+1,m. (4.13)

Introducing the normalized operators, a = A/
√

2g and a† = A†/
√

2g, in (4.13) and applying
the commutator to a test function, in the scaling limit one obtains the canonical bosonic
commutation relation:

[a, a†] = 1 + O(g). (4.14)

Thus, once normalized in the same way, the equations in (4.7) correspond to the lowering and
raising operations on the eigenstates ψn and φn of the harmonic oscillator.

The eigenstate φ0(u), associated with the excitation ε0 which is vanishing in the scaling
limit, cannot be obtained from the harmonic oscillator equation since it is incompatible with
the boundary condition at −∞. It corresponds to a mode which is localized in the vicinity of
the left boundary (we consider open boundary conditions) and which is related to the presence
of a non-vanishing magnetization ms at the left boundary of the system [50, 51]. In order to
obtain the form of this localized mode and the actual value of the corresponding excitation,
one has to come back to the original finite-size system with open boundary conditions. It can
be shown that, when it vanishes faster than 1/L, the lowest excitation is given by [52–54]

ε0 � msm
∗
s , (4.15)

where m∗
s is the magnetization of the dual chain at the left boundary. ms and m∗

s are equal to
the component φ0(−L/2) of the normalized eigenvector and can be deduced from the second
equation in (4.7) with ε0 = 0. These boundary magnetizations take the following forms [50]:

ms =

1 +

L/2∑
k=−L/2

k∏
l=−L/2

h2
l




−1/2

, m∗
s =


1 +

L/2∑
k=−L/2

k∏
l=−L/2

h−2
l




−1/2

. (4.16)

With hl = 1 + gl it is straightforward to show that ms is O(1) whereas the dual magnetization
is exponentially small:

m∗
s �

( g

π

)1/4
exp

(
−gL2

8

)
. (4.17)

As a consequence, the smallest excitation vanishes exponentially with the size of the system
as

ε0 ∼ e−gL2/8. (4.18)

Using the second equation in (4.7) with ε0 ∼ 0, one obtains

φ0(−L/2 + l) � φ0(−L/2) e−l/ l0 , l−1
0 = |ln(1 − gL/2)|. (4.19)

The localization length l0 diverges as (θ/2)−1 when the local deviation from the critical
transverse field, θ/2 = 1 − h−L/2, vanishes. It behaves as the local correlation length since
ν = 1 for the Ising quantum chain. In the scaling limit g → 0 and L → ∞ while θ = gL

remains constant; thus the localization length l0 also remains constant and the localized mode,
φ0(u), has a vanishing amplitude in the bulk.

This completes the diagonalization of the model in the continuum limit.
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Figure 1. Rescaled energy density profiles for different chain sizes L and θ values. The
corresponding values of the gradient are g = 1 × 10−3, 5 × 10−4, 2 × 10−4, 1 × 10−4 from
top to bottom in the legend. The solid line is the analytic result in (4.24).

4.3. Energy density profile

Let us consider the connected autocorrelation function in imaginary time

Ge(l, τ ) = 〈
σ z

l (τ )σ z
l

〉 − 〈
σ z

l

〉2
, (4.20)

where σ z
l (τ ) = eτHσ z

l e−τH. It can be rewritten as the eigenstate expansion

Ge(l, τ ) =
∑
i>0

∣∣〈i|σ z
l |0〉∣∣2

e−τ(Ei−E0), (4.21)

where |0〉 is the ground state of H with eigenvalue E0 and |i〉 an excited state with eigenvalue
Ei . Since the operator σ z

l is a two-fermion operator, the only non-vanishing matrix elements
in the expansion are the two-fermion states |i〉 = η

†
qη

†
p|0〉. When τ → ∞, the amplitude of

the dominant term defines the off-diagonal energy density

e(l) = ∣∣〈ε|σ z
l |0〉∣∣, (4.22)

where |ε〉 = η
†
1η

†
0|0〉 is the first even excited state. The expansion of σ z

l in terms of diagonal
fermions leads to [56]

e(l) = |ψ1(l)φ0(l) − ψ0(l)φ1(l)|. (4.23)

Inserting (4.12) into (4.23), one finally obtains the Gaussian profile:

e(l) = |ψ0(l)|2 =
√

g

π
exp(−gl2), (4.24)

which is in agreement with the form (2.15) deduced from scaling considerations since
ν = xe = 1 in the Ising model.

In order to reduce the boundary effects due to the localized mode, one has to consider
sizes L � l0 ∼ θ−1 for small θ . Typically, for θ = 0.1, l0 � 20 and taking L > 10 × l0
is sufficient to suppress the localized mode effect. The behaviour of the off-diagonal energy
density, deduced from (4.23) through numerically exact diagonalization for chains of size up
to L = 1000, is shown in figure 1. An excellent agreement with the analytic result in (4.24)
is obtained.
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4.4. Magnetization profile

Due to the Z2 symmetry of the Hamiltonian, the ground state expectation value of σx
l identically

vanishes. In order to obtain the magnetization profile one has to break this symmetry. Since
the ground state |0〉 is asymptotically degenerate with the lowest one-fermion state |σ 〉 = η+

0 |0〉
such that Eσ − E0 = ε0 � 0, one can construct the state

|+〉 = 1√
2
(|0〉 + |σ 〉) (4.25)

and take the expectation value of σx
l in that state which leads to1

m(l) = 〈+|σx
l |+〉 = 〈σ |σx

l |0〉. (4.26)

One may also note that the imaginary time autocorrelation function has the following
asymptotic behaviour:

lim
τ→∞ Gm(l, τ ) = m2(l) = 〈σ |σx

l |0〉2, (4.27)

which is another way to justify the use of the off-diagonal matrix element for the magnetization
profile.

Rewriting σx
l in terms of diagonal fermions and using Wick’s theorem, the local

magnetization can be expressed as a determinant [55]:

m(l) =

∣∣∣∣∣∣∣∣∣∣∣

H−L/2 G−L/2,−L/2 G−L/2,−L/2+1 . . . G−L/2,l−1

H−L/2+1 G−L/2+1,−L/2 G−L/2+1,−L/2+1 . . . G−L/2+1,l−1

...
...

...
...

Hl−1 Gl−1,−L/2 Gl−1,−L/2+1 . . . Gl−1,l−1

Hl Gl,−L/2 Gl,−L/2+1 . . . Gl,l−1

∣∣∣∣∣∣∣∣∣∣∣
, (4.28)

where

Hj = φ0(j), Gj,k = −
L∑

n=0

φn(j)ψn(k). (4.29)

Figure 2 shows the rescaled magnetization profile obtained for chain sizes up to L = 1000
and different values of θ . The numerical results are in excellent agreement with the scaling
behaviour of equation (2.14) with ν = 1 and xm = 1/8 for the Ising quantum chain in a
transverse field.

In order to test the scaling assumption (2.10), m1/(νxm) = m8 is plotted as a function of
gz in figure 3. The spontaneous magnetization of the homogeneous Ising chain varies as
m = (1 − h2)1/8 as a function of the transverse field [46] for h � 1. Replacing h by its local
value h(z) = 1 + gz in the inhomogeneous system, one obtains [m(z, g)]8 = −2gz − g2z2 for
z < 0 in very good agreement with the numerical data. One may note that the second term
in this expression does not fit with the scaling form which follows from (2.9), but this term
becomes negligible in the scaling limit where g → 0 as may be verified in figure 3.

Figure 4 shows the behaviour of the rescaled magnetization profile in the disordered
region on a linear-logarithmic scale in order to check the exponential decay, exp(−const gz2),
expected from equation (2.14). The exact numerical results are once again in quite good
agreement with the expected scaling behaviour.

1 More generally, with the linear combination |α〉 = |0〉+α|σ 〉√
1+ρ2

, where α = ρ eiθ , one obtains 〈α|σx
l |α〉 =

2ρ cos θ

1+ρ2 〈σ |σx
l |0〉 which is maximum for α = 1 when 〈α|σx

l |α〉 = 〈σ |σx
l |0〉.
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Figure 2. Rescaled magnetization profiles for different chain sizes L and θ values. The values of
the gradient are the same as in figure 1.
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Figure 3. Behaviour of the magnetization profile for z < 0. The dashed line gives m8 = −2gz,
the behaviour expected from equation (2.10), valid in the scaling limit where g → 0. The solid
line corresponds to m8 = −2gz − g2z2 (see text). The values of the gradient are the same as in
figure 1.

4.5. Correlation functions

The correlation between a spin at l and the central spin is measured by the correlation function,

�(l) = 〈0|σx
0 σx

l |0〉, (4.30)

given by the determinant [46]
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Figure 4. Semi-logarithmic plot of the rescaled magnetization profile in the disordered region,
z > 0. A linear behaviour is expected from equation (2.14). The values of the gradient are the
same as in figure 1.
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Figure 5. Scaling behaviour of the spin–spin correlation function �(z, g) for g = 5 × 10−4

(diamond), 1 × 10−4 (square). The dashed line corresponds to the product 〈m(0)〉〈m(z)〉 and the
inset gives the behaviour of the connected part.

�(l) =

∣∣∣∣∣∣∣∣∣

G1,0 G1,1 . . . G1,l−1

G2,0 G2,1 . . . G2,l−1

...
...

...

Gl,0 Gl,1 . . . Gl,l−1

∣∣∣∣∣∣∣∣∣
(4.31)

which involves the contractions already defined in (4.29).
The numerical results, shown in figure 5, confirm the scaling form given in (2.16). The

behaviour of the connected part is shown in the inset. A closer analysis of the decay of �c(z, g)
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Figure 6. Semi-logarithmic plot of the rescaled connected part of the spin–spin correlation function
as a function of gz2. The linear behaviour is in agreement with (4.32).

points to the following Gaussian behaviour:

�c ∼ z−1/4 exp(−const gz2) (4.32)

in agreement with the scaling prediction (2.16). The constant takes a different value on the
two sides of the system (see figure 6).

5. Summary and conclusion

We have presented a scaling theory for the behaviour of the magnetization profile, the energy
density profile and the two-point correlation function in a critical system in the presence of a
linearly varying deviation from the critical coupling, �(z) = gz. The gradient g introduces
a new length scale in the problem, � ∼ g−ν/(1+ν), which depends on the correlation length
exponent ν in the case of a thermal perturbation considered here. The form of the scaling
functions has been obtained by assuming that the different physical quantities have locally the
same functional form as in the homogeneous system with the deviation from the critical point,
�, replaced by its local value, �(z), in the inhomogeneous system.

The results of the scaling theory have been confirmed, first in mean-field theory and then
in a study of the Ising quantum chain in a linearly varying transverse field. In this latter case,
the excitation spectrum of the quantum Hamiltonian has been obtained exactly in the scaling
limit where the size of the system L → ∞, the gradient g → 0 while the product Lg is held
fixed. In this continuum limit one recovers the eigenvalue equation of the harmonic oscillator
problem. Knowledge of the eigenvectors allows us to calculate exactly the energy density
profile and to obtain numerically exact results for the magnetization density and the two-point
correlation function. The very good agreement with the scaling results strongly supports the
locality assumption used to deduce the form of the scaling functions.
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